首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58762篇
  免费   6492篇
  国内免费   2101篇
电工技术   2787篇
综合类   4252篇
化学工业   13161篇
金属工艺   6245篇
机械仪表   2601篇
建筑科学   6015篇
矿业工程   957篇
能源动力   9059篇
轻工业   2835篇
水利工程   546篇
石油天然气   2607篇
武器工业   368篇
无线电   1784篇
一般工业技术   8454篇
冶金工业   3604篇
原子能技术   1148篇
自动化技术   932篇
  2024年   106篇
  2023年   995篇
  2022年   1661篇
  2021年   1952篇
  2020年   2045篇
  2019年   1733篇
  2018年   1582篇
  2017年   1811篇
  2016年   2035篇
  2015年   2006篇
  2014年   3497篇
  2013年   3676篇
  2012年   4078篇
  2011年   4466篇
  2010年   3249篇
  2009年   3415篇
  2008年   2655篇
  2007年   3718篇
  2006年   3356篇
  2005年   2913篇
  2004年   2541篇
  2003年   2255篇
  2002年   2076篇
  2001年   1670篇
  2000年   1325篇
  1999年   1083篇
  1998年   894篇
  1997年   756篇
  1996年   619篇
  1995年   588篇
  1994年   475篇
  1993年   382篇
  1992年   346篇
  1991年   243篇
  1990年   199篇
  1989年   203篇
  1988年   132篇
  1987年   104篇
  1986年   85篇
  1985年   64篇
  1984年   91篇
  1983年   71篇
  1982年   76篇
  1981年   25篇
  1980年   24篇
  1979年   11篇
  1978年   5篇
  1975年   4篇
  1959年   30篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
11.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
12.
The present study focused on the novel material with significantly improved properties for the application in the area of clean energy. The new complex oxide BaLaIn0·5Y0·5O4 with layered perovskite structure was obtained for the first time. It was proved that the introduction of Y3+ ions in the perovskite layer of BaLaInO4 leads i) to the rise of the oxygen-ionic conductivity due to the increase in mobility of oxygen ions as a result of the expand of the cell volume and ii) to the enhancement of protonic conductivity due to the increase in the proton concentration and mobility. The sample BaLaIn0·5Y0·5O4 is nearly pure proton conductor below 400 °C and has the protonic conductivity value 1.6?10?5 S/cm at this temperature.  相似文献   
13.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
14.
15.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
16.
《Ceramics International》2022,48(17):24906-24914
Synthesis of materials in Ni/SrTiO3 system was undertaken. Perovskite structure material with nominal composition SrTi0.98O3 was synthesised by the sol-gel method. Nickel was introduced into the system by the wet impregnation method followed by proper thermal treatment. Two research paths were carried out: the evaluation of sintering conditions on material properties (sintering temperature: 1100, 1200, 1300 and 1400 °C; sintering time: 1, 3 and 5 h for sintering at 1300 °C) and the effect of nickel addition on the material properties - 1, 2, and 5 mol% of Ni compared to the amount of Ti was introduced into the analysed system. The microstructures of the materials, together with their structural (XRD analysis) and electrical (total conductivity and Seebeck coefficient) properties, were determined. Furthermore, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPOx) measurements were performed to evaluate the materials’ redox properties. It was shown that less than 1 mol% of Ni could be incorporated into the strontium titanate structure when a wet impregnation was chosen as the method for the introduction of Ni into the SrTiO3-based system. NiO and, for the highest amount of introduced nickel, also NiTiO3 were the main additional nickel-containing phases. For all materials synthesised in the Ni/SrTiO3 system, the positive value of the Seebeck coefficient was observed, suggesting that nickel is an acceptor-type dopant while incorporated into the perovskite structure. However, the TPR measurements clearly imply that nickel can be incorporated into the strontium titanate structure in various oxidation states.  相似文献   
17.
The state-of-the-art protonic ceramic conductor BaZr0.8Y0.2O3-δ (BZY20) requires an extremely high sintering temperature (≥1700 °C) to achieve the desired relative density and microstructure necessary to function as a proton conducting electrolyte. In this work, we developed a cold sintering pretreatment assisted moderate-temperature sintering method for the fabrication of high-quality pure BZY20 pellets. BZY20 pellets with high relative density of ~94% were fabricated with a final sintering temperature of 1500 °C (200 °C lower than the traditional sintering temperature). A comparison with BZY20 control samples indicated that the proper amount of BaCO3 introduced on the BZY20 particle surface and the high green density achieved by cold sintering pretreatment were the main drivers for lowering the sintering temperature. The electrical conductivity measurement by electrochemical impedance spectroscopy showed that the as-prepared BZY20 pellets have a proton conductivity comparable to the state-of-the-art values. The cold sintering pretreatment outlined in this work has the potential to lower the sintering temperatures for similar types of protonic ceramic materials under consideration for a wide range of energy conversion and storage applications.  相似文献   
18.
19.
NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO. The ripple effect was included in the upgraded version of the GYCAVA code. It is found that loss regions of NBI fast ions are mainly on the low field side near the edge in the presence of ripple. For co-current NBIs, the synergy effect of ripple and Coulomb collision on fast ion losses is dominant, and fast trapped ions located on the low field side are easily lost. The ripple well loss and the ripple stochastic loss of fast ions have been identified from the heat loads of co-current NBI fast ions. The ripple stochastic loss and the collisioninduced loss are much larger than the ripple well loss. Heat loads of lost fast ions are mainly localized on the right side of the radio frequency wave antennas from the inside view toward the first wall. For counter-current NBIs, the first orbit loss due to the magnetic drift is the dominant loss channel. In addition, fast ion loss fraction with ripple and collision for each NBI linearly increases with the effective charge number, which is related to the pitch angle scattering effect.  相似文献   
20.
Herein, we describe a reduced‐scale test (“Cube” test), measuring the fire performance of specimens including a fire barrier (FB) and a flammable core material, which acts as the main fuel load. The specimen is intended to reproduce a cross‐section of a composite product where heat/mass transfer occurs primarily in a direction perpendicular to the FB. The Cube test procedure and benefits are discussed in this work by adopting residential upholstery furniture as an exemplary study. One flexible polyurethane foam, one polypropylene cover fabric, and 10 commercially available FBs were selected. They were used to compare the fire performance of FBs, measured in terms of peak of heat release rate, in the ASTM E1474‐14 standard test and the newly developed Cube test. Edge effects severely affected the performance of FBs in the ASTM E1474‐14 standard test but not in the Cube test. Furthermore, appropriate test conditions were determined in the Cube test to measure the so‐called “wetting point,” that is, the time and value of heat release rate measured when flammable liquid products were first observed on the bottom of the specimen. The relevance of the “wetting point” in terms of full‐scale fire performance and failure mechanism of FBs is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号